BAB 5
MOMEN, KEMIRINGAN DAN KURTOSIS
A.
Momen
Misal
diketahui variabel X dengan harga X1, X2, X3 . . .
. Xn. Jika A sebuah bilangan tetap dan r = 0, 1, 2,
3, maka momen di sekitar A disingkat
m’rdidefinisikan oleh
Dengan
Untuk menghitung momen disekitar
rata-rata, untuk data dalam daftar distribusi frekuensi, kita lakukan sebagai
berikut:
TABLE 5.1:
Table pembantu untuk mencari m
Data
|
f1
|
Ci
|
f1Ci
|
f1C12
|
f1C13
|
f1C14
|
60 – 63
64 – 67
68 – 71
72 – 75
76 – 70
|
5
18
42
27
8
|
-2
-1
0
1
2
|
-10
-18
0
27
16
|
20
18
0
37
42
|
-40
-18
0
27
64
|
80
18
0
27
128
|
Jumlah
|
100
|
15
|
97
|
35
|
253
|
Dapat dihitung
:
Jadi Varian S2 =
m2 = 15,16
B. Kemiringan
Kurva distribusi normal, yang tidak terlalu rucing atau tidak terlalu datar.
Dinamakanmesokurtik,
kurva yang runcing dinamakan leptokurtik sedangkan yang
datar disebutplatikurtik.
Salah satu ukuran kurtosis ialah
koefisien kurtosis, diberi simbol a4, ditentukan
dengan rumus a4 = (m4/m)
Kriteria yang didapat dari rumus
ini ialah:
a) a4 =
3 à Distribusi
normal
b) a4 >
3 à Distribusi
yagn leptokurtik
c) a4 <
3 à Distribusi
yang platikurtik
Tidak ada komentar:
Posting Komentar